ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD (Department of Mathematics & Statistics)

WARNING

- 1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
- 2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Mathematic-1 (1308) Level: F.A/F.Sc Semester: Spring, 2014 Total Marks: 100 Pass Marks: 40

ASSIGNMENT No. 1

Note: Attempt all questions and each question carries equal marks.

Q.1 a) Prove the following identity.

$$\frac{\tan\frac{\theta}{2} + \cot\frac{\theta}{2}}{\tan\frac{\theta}{2} - \cot\frac{\theta}{2}} = -\sec\theta$$

b) Find the periods of the following functions: i) $\sin \frac{x}{z}$ ii) $\sec 9x$

Q.2 a) Show that
$$\tan^{-1}A + \tan^{-1}B = \tan^{-1}\frac{A+B}{1+B}$$

b) Show that: (i)
$$\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$$
 (ii) $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$

c) Reduce $sin^4\theta$ to an expression involving only function of multiples of θ ,

Q.3 a) Find x, if
$$tan^2 45^\circ - cos^2 60^\circ = xsin 45^\circ cos 45^\circ tan 60^\circ$$
.

b) If $\cot\theta = \frac{5}{2}$ and the terminal arm of the angle is in the 1st quadrant, find the value of

$$\frac{3\sin\theta + 4\cos\theta}{\cos\theta - \sin\theta}$$

- Q.4 a) Prove that: $abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$
 - b) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120°.
- Q.5 a) If α , β , γ are the angles of a triangle ABC, show that

$$\cot\frac{\alpha}{2} + \cot\frac{\beta}{2} + \cot\frac{\gamma}{2} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}\cot\frac{\gamma}{2}$$

 $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$ i)

ii)
$$\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$$

ASSIGNMENT No. 2

(Units 6–9)

Total Marks: 100

Pass Marks: 40

Note: Attempt all questions and each question carries equal marks.

Q.1 a) Evaluate the following limits
i)
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$$
 ii) $\lim_{\theta \to 0} \frac{1 - \cos \theta \theta}{1 - \cos q \theta}$
(b) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} & x \neq 2 \\ \frac{x-2}{k} & x = 2 \end{cases}$
Find value of k so that f is continuous at $x = 2$.
Q.2 a) Apply the Maclaurin series expansion to prove that
 $\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^5}{16} + \cdots$
b) Find y_4 if $y = \ln(x^2 - 9)$
c) Show that $y = x^x$ has a minimum value at $x = \frac{1}{e}$
Q.3 a) Prove the following
i) $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$
ii) $2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$

b) Find the value of each expression
$$1 + 1 = 1 = 1 = 1 = 1 = 1$$

i)
$$\tan(\cos^{-1}\frac{\sqrt{3}}{2})$$
 ii) $\sin[\tan^{-1}(-1)]$
Prove that $\tan^{-1}\frac{120}{2} - 2\cos^{-1}\frac{12}{2}$

c) Prove that
$$\tan^{-1}\frac{120}{119} = 2\cos^{-1}\frac{12}{13}$$

Q.4 a) Find the value of θ satisfying the following equations

i)
$$3tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$$
 ii) $4sin^2\theta - 8\cos\theta + 1 = 0$
b) Find the solution set of the following equations
i) $sin 7x - sin x = sin 3x$ (*ii*) $sin \theta + sin 3\theta + sin 5\theta + sin 7\theta = 0$
Q.5 a) If $y = e^{ax} sin bx$, Show that $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$
b) Differentiate $\frac{x^2+1}{x^2-1}$ w.r.t $\frac{x-1}{x+1}$
c) Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = tan^{-1}\frac{x}{y}$