ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD (Department of Mathematics \& Statistics)

WARNING

1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Mathematic-1 (1308)
Level: F.A/F.Sc

Semester: Spring, 2014
Total Marks: 100
Pass Marks: 40

ASSIGNMENT No. 1
(Units 1-5)
Note: Attempt all questions and each question carries equal marks.
Q. 1 a) Prove the following identity.

$$
\frac{\tan \frac{\theta}{2}+\cot \frac{\theta}{2}}{\tan \frac{\theta}{2}-\cot \frac{\theta}{2}}=-\sec \theta
$$

b) Find the periods of the following functions:
i) $\sin \frac{x}{5}$
ii) $\sec 9 x$
Q. 2 a) Show that $\tan ^{-1} A+\tan ^{-1} B=\tan ^{-1} \frac{A+B}{1-A B}$
b) Show that: (i) $\frac{1}{2 r R}=\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a} \quad$ (ii) $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$
c) Reduce $\sin ^{4} \theta$ to an expression involving only function of multiples of θ,
Q. 3 a) Find x, if $\tan ^{2} 45^{\circ}-\cos ^{2} 60^{\circ}=x \sin 45^{\circ} \cos 45^{\circ} \tan 60^{\circ}$.
b) If $\cot \theta=\frac{5}{2}$ and the terminal arm of the angle is in the $1^{\text {st }}$ quadrant, find the value of

$$
\frac{3 \sin \theta+4 \cos \theta}{\cos \theta-\sin \theta}
$$

Q. 4 a) Prove that: $a b c(\sin \alpha+\sin \beta+\sin \gamma)=4 \Delta s$
b) The sides of a triangle are $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Prove that the greatest angle of the triangle is 120^{*}.
Q. 5 a) If α, β, γ are the angles of a triangle ABC , show that

$$
\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}+\cot \frac{\gamma}{2}=\cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}
$$

b) Prove that
i) $\cos 20^{\circ}+\cos 100^{\circ}+\cos 140^{\circ}=0$
ii) $\frac{\sin \theta+\sin 3 \theta+\sin 5 \theta+\sin 7 \theta}{\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta}=\tan 4 \theta$

ASSIGNMENT No. 2

(Units 6-9)

Total Marks: 100
Pass Marks: 40
Note: Attempt all questions and each question carries equal marks.
Q. 1 a) Evaluate the following limits
i) $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}$
ii) $\quad \lim _{\theta \rightarrow 0} \frac{1-\cos p \theta}{1-\cos q \theta}$
(b) If $\quad \mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2} & x \neq 2 \\ k & x=2\end{array}\right.$

Find value of k so that f is continuous at $x=2$.
Q. 2 a) Apply the Maclaurin series expansion to prove that
$\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{8}}{16}+\cdots$
b) Find y_{4} if $\quad y=\ln \left(x^{2}-9\right)$
c) Show that $y=x^{x}$ has a minimum value at $x=\frac{1}{e}$
Q. 3 a) Prove the following
i) $\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}=\frac{\pi}{2}$
ii) $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$
b) Find the value of each expression
i) $\tan \left(\cos ^{-1} \frac{\sqrt{3}}{2}\right)$
ii) $\sin \left[\tan ^{-1}(-1)\right]$
c) Prove that $\tan ^{-1} \frac{120}{119}=2 \cos ^{-1} \frac{12}{13}$
Q. 4 a) Find the value of θ satisfying the following equations
i) $3 \tan ^{2} \theta+2 \sqrt{3} \tan \theta+1=0$
ii) $4 \sin ^{2} \theta-8 \cos \theta+1=0$
b) Find the solution set of the following equations
i) $\sin 7 x-\sin x=\sin 3 x \quad$ (ii) $\sin \theta+\sin 3 \theta+\sin 5 \theta+\sin 7 \theta=0$
Q. 5 a) If $y=e^{a x} \sin b x$, Show that $\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$
b) Differentiate $\frac{x^{2}+1}{x^{2}-1}$ w.r.t $\frac{x-1}{x+1}$
c) Show that $\frac{d y}{d x}=\frac{y}{x}$ if $\frac{y}{x}=\tan ^{-1} \frac{x}{y}$

